Circuits Regulating Pleasure and Happiness: The Evolution of the Amygdalar-Hippocampal-Habenular Connectivity in Vertebrates
نویسندگان
چکیده
Appetitive-searching (reward-seeking) and distress-avoiding (misery-fleeing) behavior are essential for all free moving animals to stay alive and to have offspring. Therefore, even the oldest ocean-dwelling animal creatures, living about 560 million years ago and human ancestors, must have been capable of generating these behaviors. The current article describes the evolution of the forebrain with special reference to the development of the misery-fleeing system. Although, the earliest vertebrate ancestor already possessed a dorsal pallium, which corresponds to the human neocortex, the structure and function of the neocortex was acquired quite recently within the mammalian evolutionary line. Up to, and including, amphibians, the dorsal pallium can be considered to be an extension of the medial pallium, which later develops into the hippocampus. The ventral and lateral pallium largely go up into the corticoid part of the amygdala. The striatopallidum of these early vertebrates becomes extended amygdala, consisting of centromedial amygdala (striatum) connected with the bed nucleus of the stria terminalis (pallidum). This amygdaloid system gives output to hypothalamus and brainstem, but also a connection with the cerebral cortex exists, which in part was created after the development of the more recent cerebral neocortex. Apart from bidirectional connectivity with the hippocampal complex, this route can also be considered to be an output channel as the fornix connects the hippocampus with the medial septum, which is the most important input structure of the medial habenula. The medial habenula regulates the activity of midbrain structures adjusting the intensity of the misery-fleeing response. Within the bed nucleus of the stria terminalis the human homolog of the ancient lateral habenula-projecting globus pallidus may exist; this structure is important for the evaluation of efficacy of the reward-seeking response. The described organization offers a framework for the regulation of the stress response, including the medial habenula and the subgenual cingulate cortex, in which dysfunction may explain the major symptoms of mood and anxiety disorders.
منابع مشابه
Phylogeny and Ontogeny of the Habenular Structure
Habenula is an epithalamic nucleus connecting the forebrain with the ventral midbrain and hindbrain that plays a pivotal role in decision making by regulating dopaminergic and serotonergic activities. Intriguingly, habenula has also attracted interest as a model for brain asymmetry, since many vertebrates show left-right differences in habenula size and neural circuitry. Despite the functional ...
متن کاملModulation of Basal Glutamatergic Transmission by Nicotinic Acetylcholine Receptors in Rat Hippocampal Slices
Objective(s) Nicotinic acetylcholine receptors (nAChRs) regulate epileptiform activity and produce a sustained pro-epileptogenic action within the hippocampal slices. In the present study, we investigated the effect of nAChRs on evoked glutamatergic synaptic transmission in area CA3 and CA1 of rat hippocampal slices to identify possible excitatory circuits through which activation of nAChRs pr...
متن کاملHappiness from Fakhr Razi's Viewpoint
Fakhr Razi has spelled out some features and various divisions for happiness. Occasionally, he uses this word rather than the words such as pleasure and perfection. He believes that concepts such as happiness, perfection, pleasure, etc. may not be defined palpably because they are basically improvisational, abstract and unessential. Since pleasure and perfection have an intense relationship wit...
متن کاملCircuits regulating pleasure and happiness: the evolution of reward-seeking and misery-fleeing behavioral mechanisms in vertebrates
The very first free-moving animals in the oceans over 540 million years ago must have been able to obtain food, territory, and shelter, as well as reproduce. Therefore, they would have needed regulatory mechanisms to induce movements enabling achievement of these prerequisites for survival. It can be useful to consider these mechanisms in primitive chordates, which represent our earliest ancest...
متن کاملAn Evolutionary Hypothesis of Binary Opposition in Functional Incompatibility about Habenular Asymmetry in Vertebrates
Many vertebrates have asymmetrical circuits in the nervous system. There are two types of circuit asymmetry. Asymmetrical circuits in sensory and/or motor systems are usually related to lateralized behaviors. It has been hypothesized that spatial asymmetry in the environment and/or social interactions has led to the evolution of asymmetrical circuits by natural selection. There are also asymmet...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 10 شماره
صفحات -
تاریخ انتشار 2016